
NASA/CR-2000-210119
ICASE Report No. 2000-24

Parallel ILU Ordering and Convergence Relationships:
Numerical Experiments

David Hysom and Alex Pothen
Old Dominion University, Norfolk, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Prepared for Langley Research Center
under Contract NAS1-97046

May 2000

DTIC QUALITY INSS-ECSED £ 20000512 026

PARALLEL ILU ORDERING AND CONVERGENCE RELATIONSHIPS: NUMERICAL

EXPERIMENTS

DAVID HYSOM AND ALEX POTHEN*

Abstract. We recently developed a parallel algorithm for computing ILU preconditioners, which was

presented at Super Computing 1999. The algorithm has been shown to be highly scalable, in terms of

execution time required for preconditioner factorization and application, for problems with up to 20 million

unknowns running on up to 216 processors. However, since the algorithm reorders the matrix, and it is widely

known that ordering can significantly affect convergence, questions were raised concerning the quality of the

computed preconditioners. In this report we present experimental results demonstrating that the orderings

imposed by the algorithm do not significantly degrade convergence, as long as the number of unknowns per

subdomain is not too small. We report on two model problems, Poisson's equation, and a special case of the

convection-diffusion equation, which other researchers have used for ordering and convergence studies. We

show that convergence behavior is fairly fiat as long as subdomains contain at least 512 nodes.

Key words, incomplete factorization, preconditioning, parallel ILU, ordering

Subject classification. Computer Science

1. Introduction. The Parallel ILU algorithm, presented at SC99 [5] 1, attempts to maximize par-

allelism through use of a two-phase ordering technique coupled with a Subdomain Graph Constraint To

describe the ordering and constraint we require a few concepts from graph theory. Given an n x n matrix A

partitioned into subdomains, the graph G(A) = (V,E) has vertex set V, which contains a node i for every

row in the matrix, and edge set E, which contains a directed edge (?', j) for every nonzero matrix entry

ay. Node i is called an interior node, and the associated matrix row an interior row, if, for every edge

(i,j) € E, 1 < j < n, nodes i and j are in the same subdomain. Node i is called a boundary node, and the

associated matrix row a boundary row, if there is at least one edge (i, j) G E such that nodes i and j are

in different subdomains. A Subdomain Graph S(A) — (Vs,ES) is a reduced graph of A, such that nodes in

Vs correspond to subdomains, and Es contains an edge (r, s) if subdomains r and s are connected by one

or more edges in G(A). An incomplete factorization of A is denoted as F = L + U — I, where LU PS A.

During the first ordering phase Parallel ILU constructs and orders the Subdomain Graph, S(A). Since

we stipulate that nodes within each subdomain be numbered contiguously, this ordering imposes a partial

ordering on G(A), i.e., if node i is ordered before node j in S(A), then all nodes in subdomain i are ordered

before all nodes in subdomain j in G{A).

During the second ordering phase nodes are ordered within individual subdomains. The ordering re-

quires that all interior nodes be ordered before the boundary nodes in each subdomain. However, within a

subdomain the relative ordering of interior nodes (and similarly boundary nodes) is not specified. A subdo-

* Old Dominion University, Norfolk, VA (email: hysom,pothen@cs.odu.edu). This work was supported by U. S. National
Science Foundation grants DMS-9807172 and ECS-9527169; by the U. S. Department of Energy under subcontract B347882
from the Lawrence Livermore Laboratory; by a GAANN fellowship from the Department of Education; and by NASA under

Contract NAS1-19480 while the authors were in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.

1 Large scale results, which do not appear in the published paper, can be viewed at http://www.cs.odu.edu/~hysom, and

are also being published in ICASE Report No. 2000-23 (http://www.icase.edu).

main's interior nodes may be ordered, for example, using reverse Cuthill-McKee (RCM), Nested Dissection,

etc. Further, different interior orderings can be used in different subdomains.

During the next step of the algorithm the matrix is factored using a row-oriented ILU algorithm, sub-

ject to the Subdomain Graph Constraint, which decrees that the Subdomain Graph of A and the factor,

F = L + Ü - I, be identical, i.e, S(A) = G{A). This constraint is trivially fulfilled for ILU(O) factorization.

When additional fill is permitted, however, it is possible for the subdomain graphs S(A) and S(F) to differ.

The Subdomain Graph Constraint can result in the deletion and/or numerical alteration of entries that

would otherwise be included in F.

Parallel ILU's factorization and solve stages have been shown to be highly scalable [5]. However, three

questions concerning convergence behavior have been raised.

1. How do the orderings imposed by Parallel ILU affect convergence?

2. How does the Subdomain Graph Constraint affect convergence?

3. How does convergence for Parallel ILU compare with that for Block Jacobi ILU? (By Block Jacobi

ILU, we refer to ILU factorization of diagonally blocked matrices.)

The first question is important since previous studies [2, 3] have shown that matrix ordering can signifi-

cantly affect convergence. The second question is prompted by the intuition that "throwing out" entries in F

will likely weaken the preconditioner. The final question is important since Parallel ILU has communication

costs absent from Block Jacobi ILU; hence, if Parallel ILU does not require significantly fewer iterations

than Block Jacobi ILU, the communication overhead may result in Parallel ILU being costlier in terms of

total execution time.

We investigated these questions by conducting numerical experiments using three ILU variants: Parallel

ILU(A;) with and without the Subdomain Graph Constraint, and Block Jacobi ILU(fc), We refer to these

methods respectively as Constrained PILU(A:), Unconstrained PILU(fc), and BJILU(fc).

The experiments used two model problems, Poisson's equation, and a convection-diffusion equation.

Our scenario is that the linear systems that must be solved, of which these are representative if simplistic

examples, arise during execution of Grand Challenge application codes, and there is a one-to-one mapping

between subdomains and processors. Results indicate that, for realistic numbers of unknowns per subdomain

(between 512 and 32K for 3D problems) the following behaviors are typical.

1. The orderings imposed by Parallel ILU affect convergence only to a relatively small degree.

2. Iteration counts are quite close for Constrained and Unconstrained PILU(fc), indicating that the

Subdomain Graph Constraint does not significantly affect convergence.

3. Constrained PILU(fc) converges in significantly fewer iterations than does BJILU(fc).

Section 3 contains extended results, including discussion of exceptional and 2D cases.

2. Algorithms. In this section we discuss details of the Parallel ILU algorithm, and summarize the

underlying theory. Figure 2.1 shows Parallel ILU in a form suitable for message passing computational

environments. Figure 2.2 shows the equivalent serial formulation that was used for this study {equivalent

here means the factors computed by both algorithms are identical). Although not all terminology and

concepts have yet been fully defined or explained, we think it useful to present the algorithms at the outset,

for the reader's ready reference.

In the following subsections we discuss three notions fundamental to Parallel ILU's design: the global

matrix ordering phase, which is based on ordering the subdomain graph; the local matrix ordering phase,

which arises from application of the Fill Path Theorem; and the Subdomain Graph Constraint, which is

based on a recent extension of the Fill Path Theorem. Each of these notions maps directly to one of the

Input: A partitioned, distributed matrix.

1. Form subdomain graph and order vertices to reduce directed path lengths,

using vertex coloring.

2. On each processor, locally order interior nodes, then order boundary nodes.

3. Factor interior rows. Processors having no lower-ordered neighbors in the

subdomain graph also factor boundary rows, and go to step 6.

4. Receive row structure and values of boundary rows from lower-ordered

neighbors in the subdomain graph.

5. Factor boundary rows.

6. Send boundary row structures and values to higher-ordered neighbors in

the subdomain graph.

FIG. 2.1. Parallel ILU

Input: A partitioned matrix.

1. Form subdomain graph S(A) and order vertices to reduce directed path

lengths using vertex coloring.

2. For each subdomain, order interior nodes, then order boundary nodes.

3. Perform ILU factorization subject to the constraint that fill entry /y is

disallowed if node i is in subdomain r, node j is in subdomain s, and edge

(r, s) is not in the edgeset of S(A).

FIG. 2.2. Equivalent Sequential Version of PILU

three steps in the serial formulation (Figure 2.2). Finally, we present a scalability analysis.

2.1. Subdomain Graphs and PILU's Global Ordering Phase. The global ordering phase, which

is the first step in PILU, is intended to reduce directed path lengths in the subdomain graph. Since nodes

in each subdomain are ordered contiguously, S(A) is considered to be a directed graph, with edges oriented

from lower to higher numbered vertices. Consequently, saying "subdomain r is ordered before subdomain s"

is equivalent to saying "all nodes in subdomain r are ordered, then all nodes in subdomain s are ordered."

We assume that factorization is row-oriented and upward-looking. Accordingly, the initial matrix A is

mapped to subdomains (i.e., processors) by rows. Edges in S(A) thus indicate data dependencies that, in

parallel environments, become communication dependencies. Hence, ordering S(A) to reduce directed path

lengths has the effect of decreasing serial communication bottlenecks.

It is natural to ask, "how much parallelism can be gained through subdomain graph reordering?" While

this is in general very difficult to answer, we can gain some intuition through analysis of simplified model

problems. Consider a matrix arising from a 2nd order partial differential equation (PDE) that has been

discretized on a regularly structured 2D grid using a standard 5-point stencil. Assume the grid has been

partitioned into m square subgrids (m being a perfect square). In the worst case, the associated subdomain

graph, which itself has the appearance of a regular 2D grid, can have a dependency path of length m — 1.

However, regular 2D and 3D grids can easily be divided into two independent sets, commonly referred to

as red-black coloring. If this is done and all red nodes are numbered, then all black nodes numbered, the

longest dependency path in S will be reduced in length from m — 1 to 1.

In general, our approach is expected to work well with any problem that can be partitioned such that

the resulting subdomain graph has a small chromatic number.

2.2. The Fill Path Theorem and PILU's Local Ordering Phase. The local ordering phase,

PILU's second step, is intended to increase the amount of communication independent processing. This step

results from application of the Fill Path Theorem [6]. Given the graph of an initial matrix A, the theorem

provides a static characterization of where fill entries arise during factorization. The characterization is

static in that fill is completely described by the structure of the graph G(A); no information from the factor

is required.

DEFINITION 2.1. A fill path is a path joining two vertices i and j, all of whose interior vertices are

numbered lower than the minimum of the numbers of i and j. 2

THEOREM 2.2. Let F = L + U - I be the complete factor of A. Then f{j ^ 0 if and only if there exists

a fill path joining i and j in the graph G(A).

Now consider the graph of a partitioned matrix, G(A). If two interior nodes belonging to separate

subdomains were connected by a fill path and the corresponding fill entry were permitted in F, the interior

nodes would be transformed into boundary nodes in G(F). This is undesirable for parallelism, for reasons

that will shortly become apparent. If each subdomain's boundary nodes are ordered after its interior nodes,

this situation cannot arise: boundary nodes in G(A) remain boundary nodes in G(F), and interior nodes in

G(A) remain interior nodes in G(F). This is so since any path joining interior nodes that are assigned to

separate subdomains must include at least two boundary nodes; since each boundary node will be numbered

higher than (at least one of) the path's end points, no such fill path can exist.

Since, for upward-looking factorization, matrix rows are only updated from lower ordered rows, the local

ordering step, in addition to preserving interior/boundary node ratios, ensures that a subdomain's interior

rows can be factored independently of row updates from any other subdomain. Therefore, if all subdomains

have relatively large interior/boundary node ratios and contain approximately equal numbers of nodes we

expect PILU to exhibit a high degree of parallelism.

2.3. The Extended Fill Path Theorem and PILU's Subdomain Graph Constraint. PILU's

Subdomain Graph Constraint arises from a recently developed theorem that extends Theorem 2.2 to provide

static characterizations of fill for incomplete, structurally based factorizations (ILU(fc)). Before introducing

the theorem, we note that the "classic" ILU(fc) algorithm operates by mimicking numeric factorization.

Classic ILU(&) initially assigns all entries in A the level zero. New entries that arise during factorization are

assigned a level based on the levels of the causative entries, according to the rule:

level(a,ij) = min {level(aih) + level(a,hj) + 1}, ai/i,a/,,- € A.

The Extended Fill Path Theorem informs us of an intimate relationship between fill entries in Classic

ILU(fc) factors and path lengths in graphs.

THEOREM 2.3. Let F = L + U — I be an incomplete factor of A, and fij a permitted entry in F. Then

fij is a level k entry if and only if there exists a shortest fill path of length k + 1 that joins i and j in G(A).

Theorem 2.3 has an intuitively simple geometric interpretation. Given an initial node i in G(A), construct

a topological "sphere" containing all nodes that are connected to i by a path containing k +1 or fewer edges.

Then a fill entry fa can only be permitted in an ILU{k) factor if j is within the sphere.

2 The reader has doubtless noted that interior is used in a different sense here than previously. We trust it will be obvious
from the context when interior is used to refer to nodes in paths, and when to nodes in subdomains.

S_2

S_0

129 130 131 132 133

124 125 126 127 128

119 120 121 122 123

114 115 116 117 118

109 110 111 112 113

134 135 136 137 138

144

143/

14:

14

141

13!

72 57 58 59 60 60

' / 71 52 53 54 55 56

/ .70 47 48 49 50 51

/ 69 42 43 44 45 46

i 37 38 39 40 41

62 ,63 ,64 ,65 ,66 ,67

31 32 33 34 35

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

12 3 4 5

\ M03 104 105 106 107 108
\

KU02 93 94 95 96 97

101 89 90 91 92

100 83 84 85 86 87

.99 78 79 80 81 82

73 74 75 76 77

S 1

s_o S_2

SO >S 3

FIG. 2.3. Illustration of the Subdomain Graph Constraint's action. The Top fiywe shows level 1 and 2 fill edges that cross
subdomain boundaries; for clarity, all other fill is omitted. The dotted edges would alter the subdomain graph, and hence are
prohibited. Bottom figure shows (left) that the subdomain graph would have a directed path of length two if the edges were not
prohibited and (right) when the edges are discarded, the longest directed path has length one.

Turning our attention to the Subdomain Graph Constraint we notice that, as a result of fill entries that

arise during factorization, subdomain graph S(F) can contain edges not present in subdomain graph S(A).

This is illustrated in Figure 2.3. The additional edges can have the effect of increasing dependency path

lengths in S(F). The Subdomain Graph Constraint—which states that fill entry fa is disallowed if node i is

in subdomain r, node j is in subdomain s, and edge {r, s} is not in the edgeset of S(A)—ensures that S(F)

remains identical to S(A). This is particularly important since the serial communication dependencies that

correspond to directed path lengths occur in both factorization and triangular solve phases.

By applying Theorem 2.3, we can gain an intuitive understanding of the number of fill entries that

may be discarded on account of the Subdomain Graph Constraint. Referring again to Figure 2.3, we see

that prohibited edges only arise near points where two subdomains that are not neighbors in S(A) "touch

corners." Theorem 2.3 tells us that these edges can only arise within a radius of k + 1 edges about such

points. Hence, if subdomains contain relatively large numbers of nodes and k is relatively small, we expect

the Subdomain Graph Constraint will prohibit only a small number of fill edges.

Several researchers have developed parallel ILU algorithms that have similarities to ours; the earliest

such work of which we are aware is credited to Saad [7]. His Distributed ILU(0) Factorization (Section

12.6.1) is similar to ours in that interior nodes are ordered before boundary nodes, and a coloring of the

subdomain graph is used to enhance concurrency in eliminating the boundary nodes. Our work, although

developed independently, in effect extends Saad's ideas to show how fill effects can be included. Additionally,

we provide an analysis to show that this approach leaads to parallel algorithmisc scalability. We also report

experimental results showing that the number of iterations for model problems is almost entirely independent

of the number of subdomains.

2.4. Scalability Analysis. In this section we present a simplified theoretical analysis of algorithmic

behavior for matrices arising from PDEs discretized on 3D grids with seven-point stencils. We assume the

grid has been block-partitioned, with each subdomain consisting of a cubic subgrid of dimension ex ex. c.

We also assume the subdomain grid has dimensions p1/3 x p1/3 x p1/3 so there are p processors total. There

are thus N — c3p total nodes in the grid, and each subdomain contains c3 = — nodes, of which at most

6c2 = 6(—)2/3 are boundary nodes.

If subdomain interior nodes are locally numbered in natural order and k <C c, it can be shown that

matrix rows in the factor asymptotically have k2 (strict) upper and lower triangular entries, and the cost

for factoring a row is ki. For red-black coloring of S(A), with red subdomains numbered before black

subdomains, Parallel ILU simplifies to the following three stages, which are assumed non-overlapping.

1. Red processors eliminate all nodes; black processors eliminate interior nodes.

2. Red processors send boundary-row structure and values to black processors.

3. Black processors eliminate boundary nodes.

The cost of the first stage is bounded by the complexity of factoring all rows in a subdomain. This is

fc4c3 = &4^.
p

The cost for the second stage is the cost of sending structural and numerical values from the upper-

triangular portions of boundary rows to neighboring processors. Assuming a standard, non-contentious

communication model wherein a and ß represent message startup and cost-per-word respectively, and with

time for each operation normalized to unity, the cost for this step is bounded by 6(a + k2ßc2) — 6(a +

k2ß(f)2/*).
For the third step, the cost of factoring a boundary row can be shown asymptotically identical to the

cost of factoring an interior row, so the cost here is 6k4c2 = 6k4 (^)2/3.

Speedup can then be expressed as

k4N
speedup =

k4f + 6(a + k2ß(f)2/3) + 6&4(^)2/3 '

The numerator represents cost for uni-processor (sequential) execution, and the three denominator terms

represent the costs for the corresponding stages of the simplified algorithm for parallel execution.

3. Results. We report on model problems identical to those used by Benzi et. al, in "Numerical

Experiments with Parallel Orderings for ILU Preconditioned." [2].

Problem 1. Poissons's equation,

Au = g.

Problem 2. Convection-diffusion equation with convection in the xy plane,

9 XV d -xv -eAu + -^exyu + —e xyu = g.
ox ay

Homogeneous boundary conditions were used for both problems. Derivative terms were discretized on the

unit square or cube, using central differencing (5-point and 7-point stencils) on regularly spaced nx xny x nz

grids (nz = 1 for 2D). Problem 2 was run using coefficients e — 1/100 and e = 1/500. The right-hand sides

of the resulting systems, Ax = b, were artificially generated as b — Ae, where e is the all-ones vector.

Both problems were solved using Krylov subspace methods as implemented in the PETSc software

library [1]. Problem 1 was solved using Conjugate Gradient [4], and Problem 2 was solved using Bi-

CGSTAB [8]. PETSc's default convergence criteria was used, 105 reduction in the residual of the pre-

conditioned system. We used our own codes for problem generation, partitioning, ordering, and symbolic

factorization.

Since we are here concerned with convergence behavior rather than parallel efficiency, scalability, etc.,

the experiments were performed in a sequential environment.

3.1. Fill Count Comparisons. Intuitively one expects, especially for diagonally dominant matrices,

that larger amounts of fill in preconditioners will reduce the number of iterations required for convergence. As

explained in Section 2, the Subdomain Graph Constraint implies that fill edges arising during factorization

will be dropped if they join subdomains that are not neighbors in the Subdomain Graph, S(A). Block Jacobi

ILU(fc) can be considered as resulting from a more severe constraint, one that requires the dropping of all

edges that join subdomains. Both constraints have the effect of reducing permitted fill.

For constant-size problems the number of dropped edges (or, contrariwise, the amount of permitted fill)

is a function of three components: the factorization level, k; the subdomain size(s); and the discretization

stencil. While the numerics of a particular PDE influence convergence, they do not affect fill counts. There-

fore, our first set of results consists of fill count comparisons for problems discretized on a 64 x 64 x 64 grid

using a standard 7-point stencil.

Table 4.1 shows fill count comparisons between Unconstrained PILU(fc), Constrained PILU(fc), and Block

Jacobi ILU(fc), for various partitionings and factorization levels. The data shows that more fill is discarded as

the factorization level increases, and as subdomain size (the number of nodes in each subdomain) decreases.

These two effects hold for both Constrained PILU(/s) and Block Jacobi ILU(fe), but are more pronounced

for the latter. For example, less than 5% of fill is discarded from Unconstrained PILU(ft) factors when

subdomains contain upwards of 512 nodes, but up to 42% is discarded from Block Jacobi factors. Thus, one

might tentatively speculate that, for a given subdomain size and level, PILU(fe) will provide more effective

preconditioning than BJILU(Ai).

Table 4.2 shows similar data for problems discretized on a 256 x 256 grid using a standard 5-point stencil.

Note that, for both 2D and 3D problems, when there is a single subdomain the factors returned by the three

algorithms are identical.

3.2. Convergence Studies. Tables 4.3 and 4.4 show iterations required for convergence for various

partitionings and fill levels. The raw data in these tables can be interpreted in various ways; we begin by

discussing two we think particularly significant.

First, by scanning vertically one can see how changing the partitioning, hence, matrix ordering, affects

convergence. When there is a single subdomain there is no global or local reordering, and our iteration counts

are in close agreement with those reported by Benzi, et. al., [2] for natural ordering (NO). Our data shows

that, unless subdomain sizes are small (64 or fewer nodes) and the factorization level high, PILU's reordering

does not significantly influence convergence. For example (see Table 4.3), Poisson's equation (Problem 1)

preconditioned with a level two factorization and a single subdomain required 24 iterations. Preconditioning

with the same level, Constrained PILU(fc), and 512 subdomains necessitated only two additional iterations.

We conclude that, for subdomain sizes that are likely to arise in real-world applications and systems similar

to our model problems, the reorderings imposed by PILU will likely have little effect on convergence.

For an intuitive understanding of convergence behavior, note that, if one performs Parallel ILU on a

matrix where each node is considered an entire subdomain, the imposed ordering degenerates to a red-black

ordering on G(A). Since at the other extreme a single subdomain corresponds to a natural ordering on

G(A), we can consider that orderings imposed by Parallel ILU lie on a continuum bounded by Natural and

Red-Black.

Second, scanning the data horizontally permits evaluation of the Subdomain Graph Constraint's effects.

Again, unless subdomains are small and the factorization level high, Constrained and Unconstrained PILU(fc)

show very similar behavior. Consider for example Poisson's equation (Problem 1) preconditioned with a level

two factorization and 512 subdomains (again, see Table 4.3). Solution with Unconstrained PILU(fc) required

25 iterations while Constrained PILU(fc) required 26.

There are two approaches for comparing Parallel ILU(fc) and Block Jacobi ILU(fc) preconditioning.

Horizontal scanning of the data in the tables permits comparison for a given partitioning and factorization

level. Doing so for Table 4.3 reveals that, with a single exception (Problem 2, e = 1/500, ILU(O) with

32,768 nodes per subdomain), PILU(fc) preconditioning is more effective than BJILU(fc) for all 3D trials.

The results from the 2D runs, Table 4.4, are less consistent. While PILU(fc) is more effective than BJILU(/c)

for Poisson's equation, BJILU(&) is sometimes more effective in the convection-diffusion problems.

The second approach is to examine iteration counts as a function of preconditioner size. This comparison

involves data from both the fill and iteration tables, and is best illustrated graphically. Plots of this data

appear in Figures 4.1 through 4.6. As in the first approach, PILU(fc) preconditioning is almost always more

effective than BJILU(fc) for 3D problems, but only sometimes so for 2D.

4. Conclusions. The results presented herein indicate that, at least for simple problems, if the number

of nodes per subdomain is not too small or the factorization level too high, the orderings imposed by Parallel

ILU(fc) have little effect on convergence. These results are for systems wherein subdomain interior nodes are

naturally ordered; experiments with other interior orderings have yet to be conducted. The results also show

that fill discarded on account of the Subdomain Graph Constraint has little adverse effect on convergence.

Finally, the data suggests that Parallel ILU(fc) can provide considerably stronger preconditioning than Block

Jacobi ILU(&) for 3D problems.

REFERENCES

[1] S. BALAY, W. D. GROPP, L. CURFMAN MCINNES, AND B. F. SMITH, PETSC home page.

http://www.mcs.anl.gov/petsc, 1999.

[2] M. BENZI, W. JOUBERT, AND G. MATEESCU, Numerical experiments with parallel orderings for ILU

preconditioners, Electronic Transactions on Numerical Analysis, 8 (1999), pp. 88-114.

[3] I. S. DUFF AND G. A. MEURANT, The effect of ordering on preconditioned conjugate gradients, BIT,

29 (1983).

[4] M. R. HESTENES AND E. L. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res.

Nat. Bur. Standards, 49 (1952), pp. 409-436.

[5] D. HYSOM AND A. POTHEN, Efficient parallel computation of ILU(k) preconditioners, SC99, ACM,

November 1999. published on CDROM, ISBN #1-58113-091-0, ACM Order #415990, IEEE Com-

puter Society Press Order # RS00197.

[6] D. J. ROSE AND R. E. TARJAN, Algorithmic aspects of vertex elimination on directed graphs, SIAM J.

Appl. Math., 23 (1978), pp. 176-197.

512 nodes per subdomain, 512 subdomains

60

55

50

45

40

35

30

25

20

15
I

55

50

45

40

35

30

25

20

15

55

50

45

40

35

30

25

20

15

Block Jacobi ILU(k) ■
Const. PILU(k) •

Unconst. PILU(k)

6

nzF/nzA

4096 nodes per subdomain, 64 subdomains

Block Jacobi ILU(k) -
Const. PILU(k) -

Unconst. PILU(k) T

\ -

•
V,

■*-■-. -.

•

. "■••„. -K-

3 4 5 6 7 8

nzF/nzA

32768 nodes per subdomain, 8 subdomains

Block Jacobi ILU(k) ■
Const. PILU(k) ■

Unconst. PILU(k) ■

5 6

nzF/nzA

FIG. 4.1. Convergence comparison as a function of preconditioner size for Poisson's equation on 64 X 64 X 64 grid. Data

points are for levels 0 through 4-

[7] Y. SAAD, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 20 Park Plaza,

Boston, MA 02116, 1996. ISBN 0-534-94776-X (hardcover).

[8] H. A. VAN DER VORST, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution

of non-symmetric linear systems, SIAM J. Sei. Stat. Comput., 13 (1992), pp. 631-634.

512 nodes per subdomain, 512 subdomains

\ \

Block Jacobi ILU(k)
Const. PILU(k)

Unconst. PILU(k) .".".;:.: -

'*. *•-."'-.
"N..^

■

•«
4 6 8

nzF/nzA

4096 nodes per subdomain, 64 subdomains

«\
Block Jacobi ILU(k)

Const. PILU k) .-it-.-.

\
Unconst. PILU(k) ■*■■■ .

\ ■

■

\
\ ■

'V^
—^ '

-
•---„

3 4 5 6 7 8

nzF/nzA

32768 nodes per subdomain, 8 subdomains

\\
\\

Block Jacobi ILU(k) —i—
Const. PILU(k) —*—

Unconst. PlLU(k) •■••«•••

\\
V

V

• ^~~ -

-

5 6

nzF/nzA

FIG. 4.2. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/100 on

64 X 64 X 64 grid. Data points are for levels 0 through 4- Data points for Constrained and Unconstrained PILU(k) are

indistinguishable in the second and third graphs.

10

TABLE 4.1

Fill comparisons for 64 X 64 x 64 grid. The columns headed "nzF/nzA " show the ratio of the number of nonzeros in the
preconditioner to the number of nonzeros in the original problem, and are indicative of storage requirements. The columns
headed "constraint effects" present another view of the same data: here, the percentage of nonzeros in the Constrained PILU(k)
and Block Jacobi ILU(k) factors are shown relative to that for Unconstrained PILU(k). These columns are indicative of the

amount of fill that is dropped due to subdomain graph constraints.

nodes per subdomain nz F/nzA constraint effects (%)

subdomain count level uncon const bj const bj

262,144 1 0 1.00 1.00 1.00 100.00 100.00

1 1.84 1.84 1.84 100.00 100.00

2 3.22 3.22 3.22 100.00 100.00

3 5.96 5.96 5.96 100.00 100.00

4 9.73 9.73 9.73 100.00 100.00

32,768 8 0 1.00 1.00 0.99 100.00 98.64

1 1.87 1.87 1.80 99.99 96.53

2 3.36 3.35 3.12 99.96 92.91

3 6.32 6.32 5.70 99.92 90.13

4 10.50 10.49 9.19 99.89 87.56

4,096 64 0 1.00 1.00 0.96 100.00 95.93

1 1.89 1.89 1.72 99.90 91.24

2 3.45 3.44 2.91 99.62 84.36

3 6.51 6.47 5.19 99.34 79.72

4 10.81 10.70 8.17 99.06 75.61

512 512 0 1.00 1.00 0.90 100.00 90.50

1 1.92 1.91 1.57 99.46 81.62

2 3.59 3.52 2.53 98.05 70.35

3 6.72 6.50 4.27 96.62 63.47

4 10.96 10.43 6.32 95.20 57.69

64 4,096 0 1.00 1.00 0.80 100.00 79.64

1 1.97 1.92 1.29 97.58 65.15

2 3.73 3.42 1.86 91.67 49.79

3 6.60 5.64 2.71 85.37 41.04

4 10.01 7.76 3.35 77.56 33.45

8 32,768 0 1.00 1.00 0.58 100.00 57.92

1 2.05 1.85 0.80 90.07 38.81

2 3.98 2.55 0.87 64.14 21.84

3 6.15 2.89 0.90 46.95 14.72

4 7.40 2.90 0.90 39.26 12.23

11

TABLE 4.2
Fill comparisons for 256 X 256 grid. The columns headed "nzF/nzA" show preconditioner size relative to problem size,

and are indicative of storage requirements. The columns headed "constraint effects" present another view of the same data:

here, the percentage of nonzeros in the Constrained PIL U(k) and Block Jacobi IL U(k) factors are shown relative to that for

Unconstrained PILU(k). These columns are indicative of the amount of fill that is dropped due to subdomain graph constraints.

nodes per subdomain nz F/nzA constraint effects (%)

subdomain count level uncon const bj const bj

65,536 1 0 1.00 1.00 1.00 100.00 100.00

1 1.40 1.40 1.40 100.00 100.00

2 1.79 1.79 1.79 100.00 100.00

3 2.59 2.59 2.59 100.00 100.00

4 3.37 3.37 3.37 100.00 100.00

5 4.16 4.16 4.16 100.00 100.00

6 4.94 4.94 4.94 100.00 100.00

16,384 4 0 1.00 1.00 1.00 100.00 99.69

1 1.40 1.40 1.39 100.00 99.11

2 1.82 1.82 1.78 100.00 98.13

3 2.63 2.63 2.56 100.00 97.42

4 3.45 3.45 3.34 100.00 96.71

5 4.28 4.28 4.11 99.99 95.99

6 5.11 5.11 4.87 99.99 95.28

1,024 64 0 1.00 1.00 0.98 100.00 97.81

1 1.42 1.42 1.35 99.98 95.24

2 1.88 1.88 1.72 99.92 91.46

3 2.73 2.73 2.44 99.87 89.08

4 3.61 3.60 3.13 99.83 86.70

5 4.50 4.49 3.80 99.78 84.39

6 5.41 5.39 4.44 99.74 82.14

64 1,024 0 1.00 1.00 0.90 100.00 90.28

1 1.49 1.48 1.21 99.60 81.46

2 2.08 2.05 1.47 98.59 70.74

3 3.02 2.96 1.96 97.76 64.70

4 3.97 3.85 2.35 96.96 59.28

5 4.89 4.70 2.66 96.09 54.38

6 5.77 5.49 2.88 95.15 49.90

16 4,096 0 1.00 1.00 0.80 100.00 80.25

1 1.55 1.52 1.03 98.43 66.43

2 2.24 2.12 1.18 94.58 52.53

3 3.06 2.78 1.40 90.87 45.87

4 3.74 3.14 1.48 84.07 39.60

5 4.26 3.30 1.48 77.48 34.72

6 4.64 3.38 1.48 72.76 31.89

12

TABLE 4.3

Iteration comparisons for 64 x 64 x 64 grid. The starred entries (*) indicate that, since there is a single subdomain, the

factor is structurally and numerically identical to Unconstrained PILU(k). Dashed entries (-) indicate the solutions either

diverged or failed to converge after 200 iterations.

nodes per subdomain Problem 1 Problem 2, e = 1/100 Problem 2, e = 1/500

subdomain count level uncon const bj uncon const bj uncon const bj

262,144 1 0 43 * * 20 * * 19 * *

1 29 * * 16 * * 16 * *

2 24 * * 13 * * 8 * *

3 19 * * 11 * * 8 * *

4 16 * * 9 * * 6 * *

32,768 8 0 45 45 53 21 21 22 32 32 26

1 32 33 41 17 17 18 14 14 19

2 27 29 37 15 15 18 11 11 17

3 22 24 33 12 12 15 8 8 13

4 19 21 29 11 11 14 7 7 13

4,096 64 0 43 43 55 23 23 24 33 33 49

1 31 32 45 18 18 19 15 15 21

2 25 27 41 15 15 20 12 11 22

3 20 23 39 13 13 18 9 9 16

4 17 20 36 11 11 16 8 8 19

512 512 0 41 41 56 27 27 30 28 28 67

1 29 31 48 19 20 26 18 16 29

2 25 26 46 17 17 22 11 12 36

3 21 23 44 13 14 22 11 11 31

4 18 21 43 11 14 20 9 12 34

64 4,096 0 43 43 64 32 32 41 28 28 -

1 30 33 60 21 23 36 17 18 124

2 26 30 58 17 20 37 13 15 115

3 21 28 58 14 18 37 12 17 127

4 17 28 58 11 18 35 10 17 132

8 32,768 0 46 46 83 40 40 74 43 43 -

1 32 41 82 27 36 74 24 46 -

2 25 40 82 15 37 70 11 45 -

3 19 40 82 10 36 74 5 44 -

4 16 40 82 8 36 74 4 45 -

13

TABLE 4.4

Iteration comparisons for 256 X 256 grid. The starred entries (*) indicate that, since there is a single subdomain, the

factor is structurally and numerically identical to Unconstrained PILU(k). Dashed entries (-) indicate the solution diverged.

nodes per subdomain Problem 1 Problem 2, e — 1/100 Problem 2, e — 1/500

subdomain count level uncon const bj uncon const bj uncon const bj

65,536 1 0 109 * * 94 * * 9 * *

1 67 * * 55 * * 11 * *

2 55 * * 44 * * 11 * *

3 40 * * 30 * * 8 * *

4 34 * * 22 * * 6 * *

5 29 * * 18 * * 6 * *

6 24 * * 14 * * 5 * *

16,384 4 0 110 110 125 95 95 95 16 16 13

1 69 69 85 56 56 56 14 14 13

2 56 56 74 46 46 46 14 14 12

3 47 47 60 31 31 31 11 11 11

4 39 39 54 24 24 24 9 9 9

5 33 35 54 19 19 19 8 8 8

6 29 31 50 16 16 16 7 7 8

1,024 64 0 112 112 132 97 97 97 24 24 20

1 72 73 98 57 57 57 20 21 19

2 59 60 89 49 50 49 19 19 19

3 46 47 78 35 35 35 17 17 18

4 38 40 73 27 27 27 16 16 17

5 33 35 71 23 23 15 15 17

6 31 34 70 20 20 20 14 14 15

64 1,024 0 120 120 158 111 111 111 59 59 71

1 81 85 137 69 72 69 49 51 64

2 66 73 132 58 60 58 41 44 63

3 52 63 128 45 51 45 37 39 -

4 43 57 126 38 45 38 34 36 57

5 37 54 127 32 43 32 33 36 61

6 34 52 126 29 39 29 29 33 61

16 4,096 0 130 130 193 - - - - -

1 90 101 182 82 93 82 70 76 -

2 67 88 179 77 - 49 62 -

3 49 84 178 41 68 41 32 - 132

4 40 84 177 30 68 30 21 62 129

5 35 84 177 22 68 22 13 62 129

1 6 29 84 177 17 68 17 7 62 129

14

512 nodes per subdomain, 512 subdomains
70

60

Block Jacobi ILU(k) ——
Const. PILU(k

Unconst. PILU(k) ■■■-»- .

50 -

40 -

30 \
^^—

20
■ v.. ■

10
■

^ '""° K-» --.-.-.-:-.: - " ^

4096 nodes per subdomain, 64 subdomains
50

45

40 ■

35

30

25

20

15

10

5

Block Jacobi ILU(k) —>—
Const. PILU(k

Unconst. PILU(k) --»■■■ "

-

\\ "
\\ "

\ ^^_+

w.._ ^-"^""^

• **
12 3 4 5 6 7 8

nzF/nzA

32768 nodes per subdomain, 8 subdomains

Block Jacobi ILU(k)
Const. PILU(k)

Unconst. PILU(k)

12 3 4 5 7 8 9 10 11

FIG. 4.3. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/500 on
64 X 64 X 64 grid. Data points are for levels 0 through 4- Data points for Constrained and Unconstrained PILU(k) are

indistinguishable in the third graph.

15

64 nodes per subdomain, 1024 subdomains

140

Block Jacobi ILU(k) —'—
Const. PILU(k)

Unconst. PILU(k) •■•-»- .

120 \ •

100
\ -

80
'k._

-"'"*-. -

60 ■

■*..

"'■•-w

40 ■

130

120

110

100

90

80

70

60

50

40

30

2 3 4 5

nzF/nzA

1024 nodes per subdomain, 64 subdomains

Block Jacobi ILU(k) —i—
Const. PILU(k)

Unconst. PILU(k) -■»■■■

* \ \v -

\
\

"""*".., -

-
*****--:--

'""'"::fc.-.

2 3 4 5

nzF/nzA

16384 nodes per subdomain, 4 subdomains

Block Jacobi ILU(k)
Const. PILU(k)

Unconst. PILU(k)

:;rTS::-:::-

0.5 1 1.5 3 3.5

nzF/nzA

FIG. 4.4. Convergence as a function of preconditioner size, for Poisson's equation on 256 X 256 grid. Data points are for

levels 0 through 7.

16

64 nodes per subdomain, 1024 subdomains

110

100

90

80

70

60

50

40

30

20

110

100

90

80

70

60

50

40

30

20

10

. 100

90 •

80

70

60

50

40

30

20

10
0.5

Block Jacobi ILU(k)
Const. PILU(k)

Unconst. PILU(k)

3 4 5

nzF/nzA

1024 nodes per subdomain, 64 subdomains

*\

Block Jacobi ILU(k) —i—
Const. PILU(k) —*— .

Unconst. PILU(k) •■••»■■■

\\
\\ ■

1
v\ •

^>^^

"^

•

2 3 4 5

nzF/nzA

16384 nodes per subdomain, 4 subdomains

Block Jacobi ILU(k) —■—
Const. PILU(k) —»—

Unconst. PILU(k) ■■■■»- "

\ -

•

■

3 3.5

nzF/nzA

FIG. 4.5. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/100 on
256 x 256 grid. Data points are for levels 0 through 7 (some data points omitted due to convergence failure). Data points for
Constrained and Unconstrained PILU(k) are nearly indistinguishable in the second and third graphs.

17

64 nodes per subdomain, 1024 subdomains

Block Jacobi ILU(k)
Const. PILU(k)

Unconst. PILU(k)

2 3 4 5

nzF/nzA

1024 nodes per subdomain, 64 subdomains

Block Jacobi ILU(k)
Const. PILU(k

Unconst. PILU(k)

2 3 4 5

nzF/nzA

16384 nodes per subdomain, 4 subdomains

\
\

Block Jacobi ILU(k) -
Const. PILU(k) -

Unconst. PILU(k) ■ ■■»■■ •

\ •
* V \

\ \ -

-
^^\ \

•

1 ^-llf

3 3.5

nzF/nzA

FIG. 4.6. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/500 on
256 x 256 grid. Data points are for levels 0 through 7. (some data points omitted due to convergence failure). Data points for
Constrained and Unconstrained PILU(k) are nearly indistinguishable in the second and third graphs.

18

